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DETECTION PERFORMANCE OF A MODIFIED GENERALIZED LIKELIHOOD

RATIO PROCESSOR FOR RANDOM SIGNALS OF UNKNOWN LOCATION

INTRODUCTION

The detection of weak signals of unknown strength and

location, in the presence of noise, is a common requirement in

many applications. One method of trying to restore information

about the unknown parameters of the signal is to estimate them

from the received data and to substitute these estimates into the

likelihood ratio. When this is done, the resulting generalized

likelihood ratio is compared with a threshold for a decision

about signal presence or absence.

Here, we will consider a modification of the generalized

likelihood ratio procedure, to be called the MGLR processor,

where only those signal strength estimates above a minimum

acceptable level are utilized (1]. This results in a processor

with nonlinearities in each channel which have breakpoints in

their characteristics. This, in turn, leads to channel outputs

and a processor output which are distinctly non-Gaussian in many

cases, thereby making the analysis of performance a rather

difficult task. In fact, use of the Gaussian approximation and

the central limit theorem can yield very misleading values for

the threshold settings and signal-to-noise ratios that are

required in order to achieve specified false alarm and detection

probabilities.

1
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The specific problem of interest is as follows. A total

number, N, of search bins contains independent noises of uniform

power distribution; this can be accomplished by a normalization

procedure. When signal is present, it occupies a subset of M of

these bins, whose locations are unknown. Each of the N channel

outputs are subjected to a common nonlinearity and then summed;

this sum is then compared with a threshold. We will derive the

false alarm and detection probabilities of this MGLR processor

and verify the results by simulation over a wide variety of

parameter values.

Some related results on a processor with a dead zone are

available in (2); however, the work here is a generalization in

several respects. The number of signal bins, M, can be less than

the total number of search bins, N, and the approximating

nonlinearity is more general, being characterized by two

parameters rather than one. In fact, in the following analysis

for the detection probability, we will utilize a different pair

of parameter values for the signal-plus-noise bins, compared with

the pair for the noise-only bins. The fact that M is less than N

significantly complicates the detection probability analysis

relative to that in [2].

2
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PROBLEM DEFINITION

A search space consisting of N bins contains a noise

background which has a uniform power distribution over all the

bins; this situation is achieved in practice by the use of

normalization, which could be based upon neighboring bins or past

behavior. In addition, when signal is present, X of these bins

contain random signal components of unknown locations and

strengths. We will presume that the number of occupied bins, M,

is also unknown; this will lead to a processor that must make

some assumption about N in order to achieve decent levels of

performance in terms of the false alarm and detection

probabilities. Other approaches, which estimate M, or which can

function without knowledge of M, are the subject of a future

report [3].

Under the noise-only hypothesis H0, the N bin outputs, (xn),

are statistically independent and identically-distributed random

variables with exponential probability density function

q 0 (un) - exp(-un) for un > 0 for I I n I N . (2)

For example, these random variables, fxn), could be the envelope-

squared outputs of a bank of disjoint narrowband filters (or FFT

outputs) for a Gaussian noise input with a flat spectrum over the

total search band. The assumption of a unit average power level,

Ex I - - J- du q 0 (u) u - 1 in (1), is a matter of convenience

and is considered to have been achieved in practice through the

use of normalization.

3
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Under the signal-plus-noise hypothesis B1 , N of the bins also

contain signal, with average power Sn in the n-th bin. These

constants, SO), are unknown. The governing probability density

function for the bin output random variables [Xn] in this case is

1(2
ql(U an exp(-_an foru >0, a - (2)n n Un > -n I1+ I

for n corresponding to the N occupied signal bins; otherwise,

density (1) holds true. Since the actual n-th signal power level

.n is unknown, it must be estimated from the available data

measurements or observations, [xn}, of the N bin outputs.

The derivation of the NGLR (modified generalized likelihood

ratio) processor [1] for this environment is accomplished in

appendix A. In order to introduce it, we first define So as the

minimum acceptable signal power level that will be tolerated as

an estimate of the signal strength. Also, we define breakpoint

xo - 1 + So, and nonlinear function

gx - 1 - ln(x) for x • X . (3)
0 otherwiseJ

We require level SO 2 0, thereby making x0 k 1. Then, the NGLR

test for deciding on presence or absence of a signal in obser-

vation, (xn}, depends on decision variable z, which is given by

Z M N N>( )z - Yn - = g(xn) < v . (4)
n-1 n-i

We are interested in determining the false alarm and detection

probabilities of this MGLR test, where v is the threshold.

4
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DERIVATION OF FALSE ALARM PROBABILITY

APPROACH

An exact derivation of the false alarm and detection

probabilities of the precise NGLR processor in (3) and (4) would

be extremely difficult and time-consuming. Instead, we will

determine the performance by combining two different

approximation techniques. In the first technique, the breakpoint

nonlinearity, g(x), in (3) is replaced by the best fitting

piecewise-linear device, which is then analyzed exactly. On the

other hand, in the second technique, the exact device, g(x), is

retained, but, instead, the probability analysis is approximate,

relying on a fourth-order fit to the exact first four moments or

cumulants of decision variable z. This two-pronged approach has

been found adequate to cover the range of values of N, M, xo, and

signal-to-noise ratio that are of major interest. Simulations

verify the accuracy and viability of this approach.

PIECEWISR-LINEAR APPROXIMATION

The specified nonlinearity g(x) of interest is given by (3).

However, the approximating nonlinearity that we adopt in its

stead is the piecewise-linear function

h~x) c + b(x - Xo0) forzZ x 0 (xo

0 for x < x

5
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where constants c and b depend on breakpoint xo, nonlinearity

g(x), and the probability density functions qk(u) of input random

variables [x.), as given in (1) and (2) for k - 0 and 1,

respectively. For example, we could choose the tangent line at

breakpoint xo (independent of qk(u)); then, we would have

C -g( X I I(Xb - gl(xo) . I - I . (6)
S0 a 0 oxo

Other choices for c and b, which minimize a mean square error

criterion, are derived and tabulated in appendix B. Additional

viewpoints and interpretations are presented there and should be

examined for a complete explanation of the approach.

The approximating-nonlinearity output is no longer the random

variable yn - g(xn) introduced in (4), but is instead the random

var 'ible

hn a h(xn) for 1 1 n N. (7)

The approximation to the original summer output z in (4) is

N N
S-• n •h(xn) .(8)

We will evaluate the exceedance distribu 4on functions of this

new random variable, C, exactly for both hypotheses H0 and Hl.

Hopefully, the piecewise-linear fit utilized in (5) will be

adequate to accurately determine false alarm probability Pf in

the 10-6 range and detection probability Pd in the .99 range.

Simulation results will bear out this approach.

6
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EXCEEDANCE PROBABILITY FOR NOISE ALONE

For noise alone, the probability density function and

exceedance distribution function of input random variables (zn)

to device h(x) are, from (1), respectively,

q 0(u) - exp(-u) for u > 0

Q0 (v) - J du q0 (u) - exp(-v) for v > 0 . (9)
V

Parameters c and b of the approximating nonlinearity h(z) are

positive constants; in particular, in the case Ho of noise-alone

inputs |xni, they will be denoted by co and bo, respectively.

This reflects and accents the fact that, during analysis, the

approximating nonlinearity h(x) should be chosen differently for

the noise-only bins versus the signal-plus-noise bins in case HI.

If v > c0 > 0, the exceedance distribution function of device

output .n - h(xn) in (7) is (for bO > 0)

E9(v) - Pr( hn > v) - Pr(cO + bo(zn - Xo) > v) - (10)

b 0 0_ o - o v b co

where we used (5) and (9), and where

B - exp(-x 0 ) , B1 - 1 - B . (11)

The probability density function of device output hn follows as

7
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d~ B U - Co0
POU) M - T (u) - BI &(u) + F- .xp(. - U(u - C0 ) (12)

for all u, where U is the unit step function. The characteristic

function of hn is therefore the Fourier transform

exp( itc0)
f MPa + B for all t . (13)

The approximation 4 (to the original summer output z) is

given by (8) as a sum of N independent terms (|nj. Therefore,

its characteristic function is closed form

f~)-fN M B+Bexp(itc0 )] NS-1 1 - iBo "

BN + N (N) N-n n exp(i nc 0 )
1 1 nT nJI (1 - imbo)n

At this point, it is convenient to define several sets of

functions which will help to minimize notation in the sequel.

The first is the set of normalized probability density functions

un ex(-u) for u >

Pn(u) - j (n-I)! for n - 1,2,... (15)
I. 0 for u~

with their corresponding characteristic functions

fn()- du exp(i~u) Pn(u) - l1 )n for n - 1,2,... (16)

8
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Also, define the corresponding exceedance distribution functions

n-i k o v k0
r exp(-v) EZ for v >

En(V) J du Pn(U) - for n = 1,2,...

1 for v 1 0 (17)

Finally, define the corresponding cumulative distribution

functions

Cn(V) a 1 - mn(V) for all v , for n = 1,2,... (18)

Then, the probability density function of t, corresponding to

characteristic function (14), is

"N N N-n nU1 +u-nc,pI(u) (() B n for all u, (19)

where we used (15) and (16). The corresponding exceedance

distribution function of C is, from (17),

B(v) -J du p,(u) - N (N) B-n Bn nFv-2) for v >n0. (20)
V

Finally, the cumulative distribution function of t is, from

(18) and (19),

C,(v) - B N N (N) BN-n Bn Cn(v c 0o)J for v > 0 (21)
n-i 0

It is very important to observe in (21) that as soon as

summation index n exceeds v/co, this sum can be terminated,

because cumulative distribution function Cn in (18) is zero for

9
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negative arguments. This is a very advantageous property,

especially for large values of breakpoint xO, because parameter

c is large then. That is, the upper limit N in (21) can be

replaced by the integer N' - INT(v/c 0 ), which can be considerably

less than N.

This result in (21) for cumulative distribution function

C,(v) pertains to hypothesis H0 , noise-only present in all N

search bins. Parameters co and b used in device h(x) in (5) are

chosen for a good fit to g(x) in (3) for x > x0 for the case of

noise-only inputs. See appendix B for more details on the

fitting procedure and numerical results.

10
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DERIVATION OF DETECTION PROBABILITY

STATISTICS OF BIN OUTPUTS WITH SIGNAL

For the signal-present bins, the probability density function

of inputs zn}I is given by (2). The corresponding exceedance

distribution function for these particular bins is

Ql(v) = exp(-av) for v > 0 . (22)

Here, for the analysis of performance of summer output r, in (8),

we presume that the signal power levels Sn in all N occupied bins

are equal, with value S; then an - I - (I + S)-I for these N

bins, while a - 1 for the remaining N - N noise-only bins.

For the signal-plus-noise bins, we allow the piecewise-linear

approximation h(x) in (5) (to the given nonlinearity g(x)) to

have different values for the parameters, c and b, which depend

on S, xo, and g(x). The values c0 and b0 for the N - N noise-

only bins are kept the same as in the false alarm analysis above.

If v > c > 0, the exceedance distribution function of a

signal-present bin output hn is (for b > 0)

Eh(v) - Pr( hn > v) - Pr(c + b(xn - xo) > v) - (23)

-Pr(Xn > x0 + - exp( ax0 -a A exp(- a- j-l)

where we used (22) and defined

A - exp(-axo) , A, - 1 - A . (24)

11
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The probability density function of device output h. is

pN(u) - A1 6(u) + a ft exp(- uL. ) U(u - c) for all u (25)

while the corresponding characteristic function is

fq(1) -A 1 + A 1 - ijb_ for all I . (26)

These functions in (25) and (26) pertain only to the signal-plus-

noise bins.

STATISTICS OF SUMMER OUTPUT t

Since summer output C. is composed of N (1I) signal bins and

K - N - M noise-only bins, its characteristic function is

exp~i~} IC xPli•Co) lK

f•()- M A1 + A 1 - igb/-J (B1  + B 1J- i~b ) fa(fb(f (27)
0

where we used (26) and (13). If S - 0, then a - 1, A - B,

A1 - BI, c -c, b - bo, and fr(t) reduces to the earlier result

in (14) for noise only.

For M 2 1, we use the binomial expansion on (27) to get

fa•).{A + xp(itc) M M exp(i:mc•
- a(A1 ) +A0 + A 1 - ") U)0 + (28)

M-1 (1 - b/)

where

U3  U(M~x0  U(M) AN- Am for 0 1 m I N .(29)UM - um(,a~Xo) M-1

12
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For K I 1, that is, M < N, (the case of N - N is much simpler),

the noise-only characteristic function term is

SB + B 0 ) K K exp(ikc , (30)

where

Tk Tk(K,,xo (K) 3 Kk Bk for 0 1 k I K (31)

Therefore, the characteristic function of suer output ,, for

signal present in M out of N bins, is

ft") n fa(") fb -

K exp(i~kc0 ) M. exD(i~mc)UO0 To0 + UO =~ T k- k + To 0= U a +
k (1 - i~bo0)k M (1 -i~b/a)m

M4 K exp(iE(mc+kc0 ))
+ = = Ur Tk m 1k (32)

rn-i k-i (1 - i~b/a)' (1 - itbo~

At this point, we utilize the results in appendix C (by

identifying a 4 b/a, 4 4 bor, z 4 -i in (C-9)) to obtain the

partial fraction expansion of the last term in (32):

1r-i pkn(b/a,b 0 ) k-I mn (b/a,bo)

(1 - i~b/a)m (1 - i~bo) n-0 (I - i~b/a)m-n_ + (1 - i~b) k-n

(33)

Substitution in (32) then yields the characteristic function of

summer output t in the form

13
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K exp(itkc ) . exwitmc
f•(1) M U0 To + UO P T k +T U. (1 - +

M4 K
+ = F Um Tk exp(iE(mc+kco)) x

(rn-i pn(b/ýab) k- vn (b/a b )b

-I - i~b/alU-n + (1 - i 0bolkn "

We now use the following connection between a corresponding

characteristic function, its probability density function, and

its cumulative distribution function; referring to (15) - (18),

we have, for k integer,

exy(i~d) +-+ 1 (- d) for k 1 . (35)(11 i~r) k r Pk (u-r Ck fov kr .15

The cumulative distribution function of t corresponding to

characteristic function (34) then follows immediately in the form

K cfi-k + M' (VrnC)I
C (v) = U0 T0 C0 (v) + U0 = Tk Ck bJ A 0 +o=l Um Cml, b/-a +

k-i 0 rn-1

M K rn-i v-mc-kc

k-i ,v-rc-kc 0
+ Vmn(b/a,bo ) Ck-nL bo

n-0

where C0 (v) - 0 for v < 0, and is 1 otherwise. One of the

attractive features of this expression is that when mc+kc 0

14
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exceeds threshold v, normalized cumulative distribution functions

C Un and Ck-n are zero, allowing the summations on m and k to be

terminated.

Coefficients pkn and vmn in (34) and (36) are immediately

available from appendix C by identifying a 4 b/a, b 0b in (C-l)

and (C-2) to get

(b bk (-ab (
Pkna;,bo - k+n nT for k 2 1, n 0 (37)

-(b-abo)

V m(Ilbo)(1b.)__C-b)n (m)nfrmIIfn1038a = (aabo-b)m+n n- fl(

These-quantities can be rapidly evaluated by recursions; dropping

the arguments for the time being, we have

Mk0 b for k 1, (39)

&o k- l+n forn1 1 kkZ; (40)
Pkn = k,n-1 _&o-b n

along with

VmO - (_abo-b) form 1, (41)I

V V b m-l- n for n 1 m, 1 . (42)mn m,n-1 b-ab n

The desired result for the cumulative distribution function

of summer output r is given by (36). The detection probability

for this processor is 1 - C (v), for threshold v.

15/16
Reverse Blank
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FOURTH-ORDER MOMENT APPROACH

When breakpoint x0 in nonlinear device g(x) in (3) is large,

the techniques in the previous two sections work well enough to

yield useful results for both the false alarm and detection

probabilities. However, as xo decreases, the series expansions

require progressively more terms, and the execution time becomes

excessive for large values of N, like 1024. In addition, the

alternating series in (36) for the cumulative distribution

function loses all its significance, eventually giving negative

values as well as values larger than 1.

Another approach that has worked well in the past is to use

a large number of moments or cumulants of the decision variable

of interest, if they can be calculated accurately to high order

(41. Additional elaboration on this approach is given in

appendix D. Here, however, we will limit consideration to the

first four moments of the exact decision variable z in (4) and

fit a fourth-order candidate characteristic function; this

procedure has been used successfully in a previous detectability

study [5]. We label this procedure FIT-4 here.

Let the k-th cumulant of random variable yn - g(Xn) in (4) be

denoted by Xy(kxoS), where it is presumed that the signal

powers in the occupied bins are all equal to S. (The dependence

of the cumulants on breakpoint xo is indicated explicitly.) For

the noise-only bins, the pertinent cumulant is Xy(kX 0,)I).

When signal is present in M bins out of the total of N search

bins, the k-th cumulant of summer output z in (4) is given by

17
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Xz(k) - 14 Xy(kxoS) + (N - N) Xy(kxo,0 ) for k I 1 . (43)

In order to find the cumulants IXy(kxoS)|, we first numerically

evaluate the corresponding moments [py(k,xoS)) exactly by means

of the integral expression

Py(k'xo'S) - g( )k j du ql(u) g(u)k -

" du a exp(-au) [u - 1 - ln(u)Jk for k Z 1 , (44)
xo0

along with py(0,XoS) - 1. In particular, we evaluate (44) for

k - 1,2,3,4. The desired cumulants of Yn then follow according

to

Xy(1,x 0o,1) - Py(l1,xo0 ,)
2

X (21,xo,) - Py (2,xo,4) - ,4(1,Xo0 ,S)

Xy( 3 ) - py(3) - 3 py(2) py (1) + 2 p 3 (1) , (45)

Xy(4) - py( 4 ) - 4 py(3) py (1) - 3 2 (2) + 12 py( 2 ) p (1) - 6p4(1)

where we have adopted an abbreviated notation in the last two

lines. Tables of the first four cumulants (Xy(kxoS)J are given

in appendix E.

The candidate characteristic function, FIT-4, that will be

fit to the first four cumulants [Xz(k)) in (43) is (5; page 59]

18
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f(•) *exy(itlb - E2) c'/2) - exp Me - t2c,/2 - M. In(1 - i.w')
4()(1 - i~w') meJ.. - 1.J

(46)

which is a product of Gaussian and chi-squared characteristic

functions; this guarantees that f 4 (t) is a legal characteristic

function, although its corresponding probability density function

can be nonzero for negative arguments. For notational shorthand,

let

X1 = X(1) , X- Xz( 2 ) , ' Xx(3)/2 , W x z(4)/6 . (47)

Then, in order for characteristic function (46) to have cumulants

{Xz(k)} for k - 1,2,3,4, we must take its constants as

3 X2
b', X - , - X 3 w' MX, • (48)

1 4 4'c-X- 3 x4

If X < X2/X 4, then c' < 0; in this case, an alternative is

to set c' - 0, getting instead the constants

-FM 2 1w--, 3 1141= . (49)
x3  x2  x3

This is, in fact, the third-order fit utilized in [5; page 43].

However, even if c' < 0 in (48), candidate characteristic

function (46) can still be useful; namely, the magnitude jf 4 (E)I

has a minimum at

- -( , (50)

19
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with minimum value

4(E,)I - exp(!- 2w.-4 (51)

If If4 (n)l <<< f 4 (0) - 1, namely rapid decay of f 4 (Y), we can

still use approximation f 4 (E) in (46) to get useful results for

the corresponding exceedance distribution function, by utilizing

only those values RI• < E.

20
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ENERGY DETECTOR PERFORMANCE

This section is not concerned with performance of the MGLR

processor or its nonlinearity g(x) given by (3). Rather, we

derive the exact performance of a processor employing a

completely linear summation of the same N search bin outputs

(xnI, looking for a signal in K bins of unknown location. This

system will serve as a worthwhile basis for comparison with the

MGLR processor and will indicate quantitatively when we should

prefer one processor over the other. Some related results for

weighted energy detectors operating under mismatches in frequency

and time locations are available in (6].

The energy detector sums over all N bin outputs according to

the linear sum

N
- = X n . (52)
n-1

It is called an energy detector because bin outputs, {znJ, are

themselves envelope-squared quantities. By reference to (1) and

(2), it is immediately seen that the characteristic function of w

under hypothesis H1 is

fw(E) = 1 a 1 (53)
w(1 _ ii/a)M (1 _ iE)N-M ' -=

where we presume equal signal power, S, in all 1 occupied bins.

At this point, we could directly use the partial fraction

expansion presented in appendix C; however, we would again
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encounter an alternating series and loss of significance.

Instead, we have resorted to the accurate numerical FFT procedure

presented in (7) in order to determine the receiver operating

characteristics exactly.

Some special cases of (53) are worth noting. For signal

power S - 0, the characteristic function reduces to

fw(I) a 1 (54)
w (1 -i•)N'

for which the false alarm probability is

N-1 n
Pf - Pr(w > vlH0 ) - exp(-v) n. M- for v > 0 (55)

Another special case occurs for N - N, namely signal in every

bin, when present. The energy detector is then the optimum

(likelihood ratio) processor. The characteristic function in

(53) reduces to

fw(•) . 1 a-l 1 (6
(1- i/a) (56)

for which the detection probability is

N-11 n

Pd - Pr(w > vJHI) - exp(-av) N-.1 ( nv) for v > 0 (57)

while the false alarm probability is (55) again.
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GRAPHICAL RESULTS

PIECEWISE-LINEAR FIT h(x)

An example of the ability of piecewise-linear fit h(x) in

(5), to approximate the actual nonlinearity g(x) in (3), is given

in figure 1 for signal absent, - 0, and for breakpoint values

x0 - 1,3,5,7,9,11. As expected, the approximations for the

larger 10 values are on top of their corresponding portions of

the dashed curve, which is x - 1 - ln(x). However, for the

smaller values of breakpoint Xo, like 1, the best linear fit cuts

across the dashed curve, and for large x values, considerably

underestimates the desired values. This is unavoidable because

of the considerable curvature of g(x) near x m 1 when z - 1.

The fit is significantly improved for 10 - 3 and larger values.

The example in figure 2 holds the breakpoint fixed at value

x0 - 5 while the signal power, S, is varied over the values 0 dB,

5 dB, 10 dB. The fit for S -5 dB les on top of the dashed

curve, while the fit for S - 10 dB overestimates g(x) in the

plotted region displayed. However, for argument values x larger

than 18, the two curves will eventually cross.

These results in figures 1 and 2 indicate that we can expect

the piecewise-linear fitting procedure to yield useful

performance prediction results for the larger values of

breakpoint xo . On the other hand, they also indicate that some

problems can be expected for the smaller values of xo, and that

an alternative procedure will be necessary for those cases.
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Figure 1. FIT-2 for S - 0 dB
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FALSE ALARM PROBABILITY

The false alarm probability Pf for the MGLR processor was

evaluated numerically from the cumulative distribution function

in (21), namely as I - Cr(v), for various values of search size

N and breakpoint xo, versus threshold v. These results are

presented in figures 3 - 7 for N - 1024, 512, 256, 128, 64,

respectively. For example, in figure 3 for N - 1024, breakpoint

x is varied from I to 11 in increments of 1. Superposed on

these smooth curves in figure 3 are a set of jagged curves

corresponding to a simulation utilizing 700,000 trials of

processor output z using the exact nonlinear device g(x) in (4).

This simulation verifies the accuracy of (21) over the complete

range of values in figure 3, including the low threshold values,

v, in the range (0,10), where the exceedance distribution

function has abrupt changes in its character.

Similar confirmation is indicated in the remaining figures

4 - 7, where simulations of various sizes (at least 1,000,000

trials) have been employed for comparison. The only case of

significant departure between theory and simulation is in figure

7 for small N (64), small xo (< 3), and large v (> 20). The

systematic deviation between the two curves for xO - 2 (at small

Pf values) illustrates that the piecewise-linear fit described in

appendix B is unable to accurately represent device g(x) in this

particular region.
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The particular results in figures 3 - 7 were obtained by

means of FIT-2, which is derived and tabulated in appendix B.

That is, both constants c and b in linear fit (5) were optimized

for minimum mean squared error. Other fits fared poorer than

FIT-2 in the problem region of figure 7. For example, FIT-i was

never better than FIT-2 and was sometimes poorer in predicting Pf

values. Attempts to utilize a Gaussian approximation for

decision variable z were much poorer, often leading to gross

underestimates of the actual false alarm probabilities. Finally,

when FIT-4 in (46) was tried, it failed because the fitting

constants b' and c' in (48) were negative, and remedy (51) was

not small enough to warrant its use.

In order to rectify the shortcoming in the bottom-right

portion of figure 7, it would be necessary to employ a two-piece

linear fit to g(x). Nevertheless, as it is, the combination of

the two types of results available in figures 3 - 7 enable

accurate selection of threshold values, v, in order to realize

specified false alarm probabilities Pf > 1E-6 for various

breakpoint values x0 and search sizes N.
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Figure 3. Pf versus v for N - 1024, FIT-2

28



TR 10539

Tf\

E-3\

E-4 mz

10

E-6 - -•! -'IE I

0 a2- X- 49 Co "2 I'4 % 1o 120

V

Figure 4. Pf versus v for N - 512, FIT-2
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Figure 5. Pf versus v for N - 256, FIT-2
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Figure 6. Pf versus v for N - 128, FIT-2
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Figure 7. Pf versus v for N - 64, FIT-2
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DETECTION PROBABILITY

A number of receiver operating characteristics (ROCs) for the

NGLR processor are presented in figures 8 - 43. They have all

been evaluated for search size N - 1024. The values of the

number, M, of bins occupied by signal and the breakpoint, zO,

cover all 36 combinations f the following numbers:

M - 8, 16, 32, 64, 128, 256,

xo - 1, 3, 5, 7, 9, 11. (58)

A detailed explanation of the ROC, receiver operating

characteristic, in figure 8 for N - 1024, M - 8, xz - 1, and

FIT-4 follows. The solid smooth curves were evaluated by means

of the candidate characteristic function in (46), for both the

false alarm probability as well as the detection probability.

The jagged curve, labeled A, is a simulation result, using 10,000

trials with the exact nonlinear device, g(x), with no

approximations, for S - 9 dB. The simulation result is seen to

overlay and verify the theoretical curve within random errors

inherent with a limited number of trials. The dashed curve,

labeled B, is what the Gaussian approximation predicts for the

performance capability, again for S - 9 dB. For this particular

example of small xo, namely 1, the Gaussian result is optimistic

by only .6 dB at the left edge of the curve.

When breakpoint xo is increased, the behavior of the receiver

operating characteristics for the MGLR processor changes

significantly, and it is necessary to switch to procedure FIT-2,
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which utilizes piecewise-linear function h(x) in (5); this switch

occurs in figure 10 for x0 2 5 when N - S. For still larger

breakpoint values, such as xo - 11 in figure 13, there are

pronounced bumps in the characteristics, in addition to an

unachievable region. That is, the only value of false alarm

probability, Pf, larger than

Pfm * 1 - (1 - exp(-xo))N - .0170 (59)

that can be realized is 1, due to the dead zone character of

nonlinearity g(x). This is due to the impulse of area B1 at the

origin of probability density function p,(u) in (12).

The simulation result A for 10,000 trials and S - 8 dB in

figure 13 confirms the theoretical approach, FIT-2, to

performance prediction. Another point to observe is the poor

quality of the Gaussian approximation B, which cuts across the

plot with virtually zero slope. Curve B bears no resemblance to

the actual characteristics, although it does cross the correct

curve just below Pf - .001.

Most of the theoretical receiver operating characteristics in

figures 8 - 43 have been verified by simulations, each using

10,000 trials. In no case is the discrepancy greater than .1 dE.

One case was pursued further; namely, figure 17 used 200,000

trials at S - 5 dB, thereby allowing a check down to Pf - 1E-5.

The two results for S - 5 dB in figure 17 are overlays, including

the bumps near Pf equal .25 and .07.
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From figures 8 - 43, it is now possible to determine the

signal power per bin, S, required for the MGLR processor, in

order to realize a specified operating point in terms of the

false alarm and detection probability pair Pf'Pd" We denote the

pair 10-3,.5 as a low-quality operating point, and the pair

10-6, .9 as a high-quality operating point.

In table 1, the required signal powers per bin, S, for the

low-quality point are presented for all 36 combinations of N and

x in (58) and for N - 1024. (The column headed ED is for the

energy detector, (52); its receiver operating characteristics

will be presented in a later subsection.) It is immediately

observed that for each choice of N, there is a best breakpoint

value x0 to use in the MGLR processor, in order to operate with

minimum signal power S. For example, for N - 8, the best xo is

11, and the minimum signal power is S - 6.3 dB. This is 2.5 dB

better than the signal power required for x0 - 1, namely 8.8 dB.

It is also 4.9 dB better than the energy detector, which requires

11.2 dB for M - 8.

As M increases, the best breakpoint xo decreases, eventually

reaching its minimum value of 1 for N - 128. For N - 256, the

MGLR and energy detector require the same signal power level of

-4.0 dB. As N tends closer to N, the energy detector will

outperform the NGLR; in fact, the energy detector is the optimum

processor for N - N.

The corresponding results for the high-quality operating

point are given in table 2. Basically the same conclusions

follow, although all the signal powers are necessarily larger
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than in table 1. The only real difference is that the best NGLR

processor still outperforms the energy detector at M - 256,

requiring .3 dB less signal power. This trend is expected to be

reversed for M somewhat larger than 256.

Table 1. S(dB) Required for N - 1024, Pf - 1"3 Pd = 5

\x 1 3 5 7 9 11 ED

8 8.8 8.7 7.8 7.0 6.4 6.3 11.2

16 6.2 6.1 5.4 5.0 4.8 5.0 8.1

32 3.7 3.6 3.3 3.2 3.3 3.7 5.0

64 1.2 1.2 1.3 1.6 2.0 2.6 2.0

128 -1.3 -1.1 -0.6 0.0 0.7 1.5 -1.0

256 -4.0 -3.6 -2.6 -1.5 -0.5 0.4 -4.0

512 -7.0

1024 -10.0

Table 2. S(dB) Required for N - 1024, Pf - 10 6 , Pd M .9

j 1 3 5 7 9 11 ED

8 13.0 12.9 12.0 11.2 10.7 10.6 15.6

16 9.7 9.6 9.0 8.3 8.2 8.3 11.9

32 6.8 6.7 6.3 6.1 6.3 6.6 8.5

64 4.2 4.2 4.1 4.2 4.6 5.1 5.3

128 1.5 1.6 2.0 2.4 3.1 3.7 2.2

256 -1.1 -0.7 0.0 0.8 1.7 2.5 -0.8

512 -3.9

1024 -6.9
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VARIATION OF PERFORMANCE WITH N

All of the receiver operating characteristics in figures

8 - 43 above were computed for search size N - 1024. In order

to ascertain the dependence on N, without the same large-scale

computational investigation, we have computed the receiver

operating characteristics for N - 512 and N - 256, but only

for a few selected cases of M and x,, namely

M - 8, xo - II, (60)

M - 32, x 0o 7, (61)

M - 256, x0 - 1. (62)

These particular pairs were selected because they cover a wide

range of values of M, and they represent the best choices of

breakpoint x0 for each particular M; see tables 1 and 2.

The receiver operating characteristics for (60) are given in

figures 13, 44, and 45; those for (61) are given in figures 23,

46, and 47; while those for (62) are given in figures 38, 48, and

49. Simulations verify the theoretical analyses in every case.

The signal powers required in order to realize the two

operating points of interest are given in tables 3 and 4,

respectively. As N changes by a factor of 2, the differences in

required signal powers are 0.2 dB for M - 8 in (60); 0.5 dB for

M - 32 in (61); and 1.1 dB for M - 256 in (62). These

differences hold for both the low-quality and the high-quality

operating points. A very crude approximation to these
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observations is h log(M) - h. These results indicate that the

cost of having to search a larger region is not significant, at

least for these sets of parameter values.

Table 3. S(dB) Required for Pf - 10-3, Pd " .5

M x0 N - 1024 N - 512 N - 256

8 11 6.4 6.2 6.0

32 7 3.2 2.7 2.2

256 1 -4.0 -5.2 -6.3

Table 4. S(dB) Required for Pf - 10- 6 , Pd M .9

M x0 N - 1024 N - 512 N - 256

8 11 10.6 10.3 10.2

32 7 6.1 5.6 5.2

256 1 -1.1 -2.2 -3.2
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ENERGY DETECTOR CHARACTERISTICS

The energy detector was described in (52), and its

characteristic function was presented in (53). The false alarm

probability, given by (55), is plotted in figure 50 for search

sizes N - 64l 128, 256, 512, 1024 for probability values down to

the 10-6 level. The receiver operating characteristics were

evaluated exactly, by the methods in 17], and are presented in

figures 51 - 58 for N - 1024 and N - 8, 16, 32, 64, 128, 256,

512, 1024, respectively. The values of required signal power in

tables 1 and 2 under the ED (energy detector) column were

obtained from figures 51 - 58. Since these receiver operating

characteristics were obtained by an exact analysis of the exact

linear summation in (52), there is no need to resort to a

simulation or a Gaussian approximation; hence, there are no

overlays.
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EXTENSION TO UNEQUAL SIGNAL POWERS

All the earlier results presumed that the N signal bins

contained exactly the same signal power S. In practice, the

values of the signal powers in the various bins will be

different. Instead of having to determine receiver operating

characteristics for each particular set of unequal signal

strengths |S(M|, we will now determine effective values to replace

S and/or N, that can be used with the existing results.

Let the signal power in the m-th signal bin beS.. for

1 1 m I N. We first consider an equivalent or effective signal

power Se to be used in place of the set S(ao. The number of

signal bins is kept at value M in this particular approach.

An alternative approach, where an effective number, Me, of

signal bins is defined instead, while the signal power set ISm

is replaced by its peak value, is considered next. Finally, a

two-parameter extraction procedure, where both Se and He are

simultaneously determined, is presented.
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MATCHING OF MEAN OUTPUTS

For breakpoint nonlinearity g(x) - x - I - ln(z) for x > zo,

define the following mean function, with a - 2/( S),

a

P(IfXo) - J du a exp(-au) (u - 1 - ln(u)] -

xo

=exp(-axo) (.I- I + lo - ln(x) - laX) -(63)

A plot of this function is given in figure 59. The asymptotic

behavior for large S is approximately linear, being given by

[8; 5.1.11]

js(Srx ) - I - ln(1 + S) + y - xo('x - ln(x ))IS as S 4-.(64)

Without loss of generality, assume that the signal is in bins

[1,M]. The mean of the output ym of nonlinearity g(x), for the

m-th signal input, is p(Sm,Xo). The corresponding mean of summer

output z is exactly

M
z = - (S-' o) + (N - N) p(Oxo) (65)

On the other hand, if all the signal powers, {S_4n are

replaced by an effective signal power value, S, over all the N

signal bins, we obtain mean value

-z = M P(S_.e xo) + (N - M) p(Oxo) . (66)

If we match these two expressions in (66) and (65) for the mean
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output, we obtain the following equation that Se must satisfy:

N

P(-Sx) a PUSS ox0 ) (67)

Once the right-hand side of (67) has been computed from the

specified 14, (S., and xo, the required Se to realize equality in

(67) can be found from figure 59. The use of closed form (63)

makes the numerical summation in (67) a simple computer task,

once a routine for exponential integral El(z) is available.

If all 1S) are equal to So then (67) yields _Se - S, as

expected. However, in general, the quadratic behavior of mean

function p(S,x .) near S - 0 indicates that the smaller signal

powers S. are suppressed relatively, the more so for larger xo.

The example M -4, 4SM - m for 1 1 m I M, yields effective signal

powers Se - 2.554, 2.557, 2.586, 2.638, 2.700, 2.763 for

xo - 1, 3, 5, 7, 9, 11, respectively.

This replacement approach of (S I by S takes account of the-0 e

specific nonlinearity g(x), the breakpoint value xO, and all of

the individual signal powers (S. I for 1 m I M. However, it

does require the solution of (67) for argument Se which leads to

equality with the computed right-hand side.

Instead of keeping M fixed throughout this replacement, we

could instead define an effective number, M e, to be used with the

replacement of the set of signal powers, S~m, by its peak value

S- maxIS.). In this latter case, the first term on the right-

hand side of (65) becomes Me V( ,ox). When we equate this

expression to the corresponding term in (65), we have an explicit
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result for the effective number Me of signal bins as

Mem X ,0) 
(68)

This result, in conjunction with expression (63), allows for

rapid and simple evaluation of Me, once zO and set (S.) are

specified. For the same numerical example above, namely M - 4,

S_ - m for 1 m I M, we find S - 4 and Me - 2.409, 2.343,

2.184, 2.020, 1.876, 1.756 for xO - 1, 3, 5, 7, 9, 11,

respectively.

MATCHING OF FIRST TWO MOMENTS

We now derive an effective number, 'me, of signal bins, in

addition to an effective signal power, S~e, for the set IS.] for

1 1 m I M. These effective parameters would then be used in

place of M and S in the results of previous sections, and would

be expected to have wider applicability than using just Se-

For nonlinearity g(x) - x - - ln(x) for x > x0, define the

following functions:

a 2 (SX_ ) - du a exp(-au) [u i- ln(u)] 2 _ 2 (S, _) , (69)

xo

a(2Sxo) - a2 (0,x)
R(S'Xo) p(S, xo) - p(0,xo) (70)
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Plots of the three functions in (70) are given below, namely the

denominator, the numerator, and the ratio R(S, 0o), in figures 60,

61, and 62, respectively. (If desired, the integral in (69) can

be evaluated by use of the results in appendix F.)

The mean and variance of the output, y3 ' of nonlinearity,

g(x), for the m-th signal input, are p( Sxo) and a2(SmXo),

respectively. The corresponding first two cumulants of summer

output z are

M

P -=" p((s_,xo) + (N - M) p(0,xo) -Pz 1

- •. (.-,xo) - p(0,xO)) + N P(O 0Xo) , (71)
in-1

2 M 22
az -- '• 2 1,,xo) + (N - 1) a2 (0,Xo) -

- a2 ( 2 (S mxO) - a2 (0XO)) + N a2(0,Xo), (72)
in-I

respectively.

On the other hand, if all the signal powers, (-SIJ, are

replaced by an effective value, S, for an effective number, Met

of signal bins, we obtain

"-z Me (P(Se'x 0 ) - P(0xo)) + N P(Oxo) , (73)

oz2  M (a2(Se,xo)- _12(O,Xo)) + N a2 (O,x) . (74)

Equating (73) to (71), and (74) to (72), it follows that we must
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satisfy

S( 2 (Szo) - a2(Ozo)j

= (P"s.zo) - P(°,o))(

Since the value of the right-hand side of (75) is known, once M,

{S(m, and xo are specified, this is a transcendental equation for

effective signal power Se. That is, S in (70) is varied until

the value in (75) is realized; this can be easily done by use of

figure 62. Then, effective number Me follows according to

= (P(',zo) -(°,zo)J

Me .mp(-sxo) - p(,Xo) 0(76)

It should be noted that this approach accounts for the

specific nonlinearity g(x), the breakpoint value xo, and all of

the individual signal powers IS ) for I I m I M, through the

quantities in (75), which in turn utilize (63) and (69). This

approach does not employ an ad hoc definition of effective

values; however, it does require a numerical solution to the

transcendental equation (75) for Se , or the use of figure 62.

The number of search bins N is not altered by any of these

replacements, and need not be changed in utilizing the earlier

plots. Rather, the values of M and/or S to be employed in using

the previously plotted receiver operating characteristics are

those given by Me and/or Se here, respectively.
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Figure 59. Mean PlS,x versus Signal Power S
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Figure 60. Difference of Means versus Signal Power S
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Figure 61, Difference of Variances versus Signal Power S
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SUMMARY

The MGLR processor has been analyzed and numerically

evaluated in terms of its false alarm and detection probabilities

Pf'Pd' over a wide range of parameter values. In particular,

plots of Pf versus threshold v for search sizes N - 1024, 512,

256, 128, 64 and breakpoint x0 - 1(1)11 have been presented.

These numerical results allow for accurate determination of

required threshold settings in order to realize specified false

alarm probability values.

In addition, receiver operating characteristics, Pd versus

Pf, for N - 1024, signal set sizes N - 8, 16, 32, 64, 128, 256,

and breakpoint values xo - 1, 3, 5, 7, 9, 11 have been plotted,

with the signal power S varied over a range sufficient to cover

the practical range of performance values. All of these results

have been checked by simulation; the discrepancy is usually less

then 0.1 dB in terms of required signal power.

The energy detector has been analyzed and evaluated exactly,

and can serve as a basis of comparison with the NGLR processor.

Receiver operating characteristics for N - 1024 and X - 8, 16,

32, 64, 128, 256, 512, 1024 have been plotted. The corresponding

plot of Pf versus threshold v is also given.

The analysis of performance has been accomplished by a

combination of two methods. A piecewise-linear approximation

works best for large breakpoint values, xo, while a fourth-order

moment fitting procedure is more appropriate for small xo values.

The piecewise-linear approach can actually be used for small
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breakpoint values, such as x0 - 3; however, the time of execution

is sometimes excessive, and there is the danger of loss of

significance, due to the large alternating terms encountered in

the series expansions. Accordingly, the fourth-order moment fit

has been used in the region of small breakpoint values xo0  An

alternative is investigated in appendix G.

One possible objection to use of these results for the

performance of the MGLR processor, in practice, is that N will

often not be known, meaning that the best breakpoint xo cannot be

selected. This raises the question of how to process, in

general, when M is unknown. Also, the use of large breakpoint

values, xo, (as suggested here for small values of M) causes us

to reject some very strong signal power estimates, which is

unsatisfactory and counter intuitive. In fact, the question of

whether we should employ a breakpoint at all is a meaningful one

that requires further investigation.

It is worthwhile to derive the true generalized likelihood

ratio tests for the situations where N is unknown, as well as

when M is known to be less than N, but the signal occupancy

pattern is unknown. Also, if partial information about the

signal structure is available, like its bandwidth, how should

this information be incorporated in the generalized likelihood

ratio test? Comparisons with the optimum likelihood ratio

processors or near-optimum processors in each case would be very

worthwhile and should be pursued. This is the subject of a

current investigation which will appear in a NUWC technical

report [3].
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APPENDIX A. MODIFIED GENERALIZED LIKELIHOOD RATIO PROCESSOR

In this appendix, we will derive the form of the modified

generalized likelihood ratio processor. Since the actual signal

power per bin, Sn, is unknown, we hypothesize parameter value Sn

and estimate it from the observation set (random variables) |xn).

We also define the signal power parameter an - 1/(1 + Sn). Since

we will only allow signal power Sn k 0, then we must have an 1 1.

According to (2), the joint probability density function of

observation |xn) under hypothesis H, is, for hypothesized

parameter values |anil

Nql(u 1 ,...,UN) - FT- [an exp(-anUn)| for un > 0 , (A-i)

n-1

where we have allowed the possibility of signal being present in

all N search bins. This is tantamount to assuming M - N, for the

time being; the method by which the estimated number of signal

bins is reduced below the value N will be indicated below.

For observation (xn|, the density in (A-i) takes on value

N
ql(X1,...,xN) -17 {an exp(-anxn)I . (A-2)n-1

This quantity is to be maximized by choice of all lan). It can

be seen that the best choice of each parameter is (random

variable) an - min[1,1/xn|, where we have accounted for the

constraint an 1 1. This translates into tne signal power

estimate Sn - max|0,xn-ii However, since values of random
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variable xn near 1 are typical (even for the noise-alone case H0

where Eixn) is 1), we will reject signal power estimates which

are below some minimum acceptable level, SO. Thus, our modified

signal power estimate is

S n -{ In - 1 f n- I I S01}; So 0. (A-3)Sn - 0 otherwise

This is equivalent to the modification

n /n n for ; Io I + S 0 1. (A-4)
n 1 otherwise j

Now, let L be the set of n values in (A-4) for which zn 2 xo.

Then, upon maximization, the n-th term in (A-2) becomes 1/(xne)

for n c L, and exp(-xn) otherwise. The generalized likelihood

ratio is then given by

GLR= m q1 1-7n 1- exp(xn-1)) -=7|exp x n-l-lnlxnlnL
o, neL 'n nicLn lf()1

N

-exp (Eý[xn-l-ln(xn)J) exp(E g(zn)) ,(A-5)

where nonlinearity g(x) is defined as

g(x) x - - ln(x) for x I x10 (A-6)

0 otherwise J

This nonlinearity has a breakpoint at x - xoI, which is never less

than 1; that is, from (A-4), xo0  1 + SO k 1, since minimum

acceptable signal power level So is never negative.
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Comparison of the generalized likelihood ratio in (A-5) with

a threshold is equivalent to the test

N zn) v (A-7)

Since breakpoint xo of nonlinearity g(9) rejects any input values

xn which are less than x., the number of nonzero contributors to

output z in (A-7) is less than N. In fact, if x is significantly

larger than 1, then very few terms will contribute to the output

z in (A-7).

The selection of breakpoint xo in this KGLR processor is its

way of restricting the estimated number of signal bins to be less

than N. However, unfortunately, there is no simple way of

deciding on the best value of breakpoint xo for each hypothesized

value of M. We must conduct a complete analysis of performance

of processor (A-7) in terms of the false alarm and detection

probabilities in order that the best z: for each specified N can

be determined. However, this still does not address the problem

of what to do when N is unknown in practice. This is a

fundamental limitation of the MGLR processor.
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APPENDIX B. PIECEWISE-LINEAR FIT TO NONLINEARITY 9(x)

Nonlinearity g(x) is zero for z < xO, and otherwise arbitrary

for x I x 0o, where zo is called the breakpoint. Function g(x) is

to be approximated by a piecewise-linear fit h(x), which is also

zero for x < xo, but which is linear for z I z*o. In particular,

let

h(x) a c + b(x - z0 ) for x I zo , (B-2)

where c is the ordinate of h(x) at breakpoint xo, and b is the

slope of h(x) for • > xo0 . A variety of choices for b and c are

possible and will be developed below.

The input to nonlinearity g(x) is a random variable z, with

probability density function p. (U). The (random) error between

the outputs of the two devices is

e - g(x) - h(x) - g(z) - c - b(z - xO) for z: I z , (B-2)

and e - 0 for x < xz0  Initially, the constants b and c in fit

h(x) will be chosen so as to minimize the mean squared error

B e {(g T, - h(x) f du p.(U) (,(u) - h(u),o

- du Px(u) (gcu) - c - b(u - xo) ; (B-3)

1 0

this is called FIT-2, because two parameters are optimized.

When we set the two partial derivatives of B to zero, the

best values of b and c are found to be given by
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L 0 R1 - L 1 2 R "0 R 0  L2 -R 1 L 1

L0L2 LIL0L 2 L I54

where

Ln =du Px(u) (u - on0 ) ,

xo

K0
Rn " du PxlU) glu) (u - xoln (-5

Xo

In the special case where probability density function p,(u)

is exponential with signal power parameter a, namely

Px(u) - a exp(-au) for u > 0 , a +- S (B-6)

the expression for Ln simplifies (for x. k 0) to

Ln - ni exp(-axo)/an . (B-7)

Correspondingly, the optimum parameter values simplify to

S-a2 J dt exp(-At) (at - 1) g(xo + t)
0

- a i dt exp(-it) (2 -at) g(xo + t) (B-8)
0

These optimum values, b and E, obviously depend on both the

breakpoint xo as well as the probability density signal power

parameter a. For signal power S - 0, then a - 1, and S, a are

denoted by Sol ao' which depend only on x.
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There are cases where it is desirable to fix ordinate c, a

priori, and to minimize mean square error E solely by choice of

slope b; this is called FIT-1. For example, ordinate a above can

turn out to be negative, even though original nonlinearity g(x)

is always positive for x 2 xo0 If this is undesirable, c could

be set to zero, for example, and the best slope b selected. When

we set the derivative of mean square error B (with respect to b)

equal to zero, the optimum slope (for fixed c - c) is given by

- du px(u) [g(u) - E] (u - xo)/' du px(u) (u - x). (B-9)
xo x0

In the special case of an exponential probability density

function px(u), as in (B-6) above, there follows (for xo 2 0)

E- . A3 J dt exp(-at) t [g(xo + t) - . (B-10)
0

This optimum value, S, depends on xo, a, andS. For signal
power S - 0, then a - 1, and we denote cby

which depends on x0 and o.

Finally, the parameters b and c in fit h(x) can be chosen

arbitrarily, with no specific optimization in mind; this case,

where zero parameters are optimized, is called FIT-0. For

example, we might take c - g(X0), the initial ordinate, and take

b - g'(xo), the initial slope; this corresponds to the tangent

line to g(x) at xO. (This particular choice takes no account of

the signal power S.) Generally, b and c can depend on parameter

a as well as xo. When S - 0, then a - I, and we denote b and c
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byb and o, respectively, which depend only on xO. Some of the

coefficients, c and b, are tabulated below for the various fit

procedures.

The mean square error z for FIT-2 is always smaller than

those for the other two fits. However, there is the possibility

of a negative ordinate 8 or Eo, which may or may not be damaging.

On the other hand, FIT-I may be poor for large signal powers S,

where large values of random variable z are frequently

encountered. Finally, FIT-0 can be very unsatisfactory, (as for

example by using the tangent,) since the output of h(x) might

always underestimate the true nonlinearity g(x); this could be

especially damaging for large 3.

One way around this shortcoming of the approximation h(x)

used in (B-1) is to use several breakpoints in approximating g(x)

with piecewise-linear fits. One possible problem with this

latter approach is the tractability of the Fourier transform of

input probability density function p,(u) over an arbitrary finite

segment. For an exponential probability density function, this

is not a problem. However, a more significant problem will

arise in determining the dominant asymptotic decay of the

characteristic function of the output of nonlinearity h(x), so

that it can be subtracted out for rapid convergence of the FFT

required for numerical evaluation of the exceedance distribution

function. This procedure has already been carried out for a

nonlinearity with a single breakpoint. Although tedious, this is

a workable approach for accurately approximating the detection

characteristics of any nonlinear memoryless device.
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OPTIMUM COEFFICIENT b FOR FIT-i, g(z) - X - 1 - ln(x)

s zo s

0 1 .50000 00000 g(xo)-O
1 1 .63463 61709 0
2 1 .70479 93293 0
3 1 .74929 19895 0
4 1 .78053 21002 0
5 1 .80390 29111 0
6 1 .82216 51352 0
7 1 .83689 78455 0
8 1 .84907 68432 0
9 1 .85934 11855 0
10 1 .86812 82760 0
16 1 .90265 28405 0

0 2 .83409 07182 0
1 2 .82671 32049 0
2 2 .84136 46500 0
3 2 .85567 46879 0
4 2 .86781 56014 0
5 2 .87797 07329 0
6 2 .88652 82066 0
7 2 .89382 42960 0
8 2 .90011 88888 0
9 2 .90560 86911 0
10 2 .91044 31283 0
16 2 .93065 54450 0

0 2 .68066 43084 g( x)-1-ln(2)
1 2 .7500o 00000 g(x 0
2 2 .79022 25134 g(x 0
3 2 .81731 80855 g x0
4 2 .83713 03195 gX0o
5 2 .85239 96646 g(X0
6 2 .86461 01481 g(X0
7 2 .87464 59948 g(x 0
8 2 .88307 15099 g(xo
9 2 .89026 60501 g(xo)
10 2 .89649 52728 g(xo)
16 2 .92163 03621 g(xo)
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OPTIMUM COEFFICIENT b FOR FIT-1, g(x) - x - 1 - ln(x)

0 1 .50000 00000 gOzo)
0 2 .68066 43084 g(xo)
0 3 .76208 37403 g(xo)
0 4 .80951 84749 g(xo)
0 5 .84084 43526 g x 0
0 6 .86316 90731 g(xo0
0 7 .87992 32882 g z0 )
0 8 .89297 87374 g(xo)
0 9 .90344 78223 g(xo)
0 10 .91203 50027 g(xo)
0 11 .91920 88943 g(xo)
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OPTIMUM COEFFICIENTS FOR FIT-2, g(z) - x - I - ]n(x)

S(dB) x 0
-m 11 .92225 95675 7.5960 03381
-4 11 .92620 52679 7.5912 90368
-3 11 .92714 32728 7.5899 30861
-2 11 .92828 10207 7.5881 49569
-1 11 .92964 98384 7.5858 06201

0 11 .93128 09423 7.5827 13409
1 11 .93320 30816 7.5786 23271
2 11 .93543 95228 7.5732 12010
3 11 .93800 45899 7.5660 64105
4 11 .94090 01605 7.5566 57775
5 11 .94411 26969 7.5443 54565
6 11 .94761 14546 7.5283 96232
7 11 .95134 84273 7.5079 11992
8 11 .95526 03258 7.4819 38230
9 11 .95927 24991 7.4494 51068

10 11 .96330 43057 7.4094 10003

-f 9 .90775 76002 5.7941 55867
-4 9 .91315 09831 5.7877 17092
-3 9 .91441 81751 5.7858 80522
-2 9 .91594 78247 5.7834 85744
-1 9 .91777 76590 5.7803 53285

0 9 .91994 35729 5.7762 46689
1 9 .92247 62583 5.7708 57817
2 9 .92539 71647 5.7637 91177
3 9 .92871 41971 5.7545 49005
4 9 .93241 77882 5.7425 19630
5 9 .93647 81265 5.7269 72270
6 9 .94084 42937 5.7070 61457
7 9 .94544 58154 5.6818 43574
8 9 .95019 66890 5.6503 06459
9 9 .95500 14422 5.6114 10871

10 9 .95976 23429 5.5641 40375

113



TR 10539

OPTIMUM COEFFICIENTS FOR FIT-2, g(x) - x - 1 - ln(x)

s(dB) x 0
-' 7 .88648 76725 4.0409 61082
-7 7 .89059 83768 4.0364 46787
-6 7 .89160 15654 4.0352 17624
-5 7 .89283 16788 4.0336 38712
-4 7 .89433 08847 4.0316 04404
-3 7 .89614 47388 4.0289 75636
-2 7 .89832 03044 4.0255 69793
-1 7 .90090 32451 4.0211 48392

0 7 .90393 38303 4.0154 02859
1 7 .90744 20032 4.0079 39227
2 7 .91144 19462 3.9982 63354
3 7 .91592 68934 3.9857 69096
4 7 .92086 51677 3.9697 32518
5 7 .92619 84553 3.9493 15412
6 7 .93184 30742 3.9235 80802
7 7 .93769 44685 3.8915 21627
8 7 .94363 44925 3.8521 01661
9 7 .94954 04350 3.8043 05370

10 7 .95529 43858 3.7471 91510

-W 5 .85211 08814 2.3680 29030
-4 5 .86465 39431 2.3530 81233
-3 5 .86748 93493 2.3489 72161
-2 5 .87085 95380 2.3436 96494
-1 5 .87481 86148 2.3369 20078

0 5 .87940 72956 2.3282 21660
1 5 .88464 55460 2.3170 78963
2 5 .89052 54537 2.3028 58079
3 5 .89700 56821 2.2848 09313
4 5 .90400 89311 2.2620 72753
5 5 .91142 35093 2.2336 96167
6 5 .91910 93940 2.1986 66239
7 5 .92690 81996 2.1559 51865
8 5 .93465 55879 2.1045 55788
9 5 .94219 41367 2.0435 68946

10 5 .94938 46865 1.9722 21122
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OPTIMUM COEFFICIENTS FOR FIT-2, g(x) - x - 1 - ln(x)

S(dB) x 0
-a 3 .78625 12208 .85305 27503
-4 3 .80999 00501 .82481 06427
-3 3 .81516 25120 .81731 52922
-2 3 .82122 36047 .80782 83112
-1 3 .82822 71199 .79584 26744

0 3 .83619 25020 .78074 60381
1 3 .84509 41622 .76181 49196
2 3 .85485 37960 .73821 72304
3 3 .86533 79676 .70902 61829
4 3 .87636 25481 .67324 74273
5 3 .88770 42542 .62985 91859
6 3 .89911 79023 .57786 25469
7 3 .91035 66214 .51633 66733
8 3 .92119 16319 .44449 22468
9 3 .93142 85042 .36171 64722

10 3 .94091 78565 .26760 44129
11 3 .94955 98168 .16197 38256
12 3 .95730 28205 .04486 33282
13 3 .96413 81279 -. 08348 39910
14 3 .97009 17657 -. 22264 79238
15 3 .97521 54947 -. 37206 52497

-a 1 .59634 73623 -. 19269 47246
-4 1 .66461 29941 -. 27361 79847
-3 1 .67837 13161 -. 29355 18221
-2 1 .69403 34922 -. 31806 14225
-1 1 .71154 20343 -. 34801 67111

0 1 .73072 76581 -. 38436 59487
1 1 .75130 37657 -. 42810 59470
2 1 .77287 66361 -. 48023 95488
3 1 .79497 21515 -. 54172 30324
4 1 .81707 57330 -. 61340 88469
5 1 .83867 85685 -. 69599 10057
6 1 .85932 16212 -. 78996 07593
7 1 .87862 98970 -. 89557 85961
8 1 .89633 24642 -1.0128 65645
9 1 .91226 74477 -1.1416 14117

10 1 .92637 43448 -1.2814 13515
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APPENDIX C. PARTIAL FRACTION EXPANSION OF PRODUCT

For j and n integer, and complex parameters a # 0, define the

quantities

n, (-for j 1 1 n 1 0; (C-1)Pa_ j n n!

6. (-a) n for j k 1 n 1 0 (C-2)(pna)J+nl n!'n"

Then, Vjn(ADa) - Pjn(af)-

These quantities can be easily evaluated by recursions:

- (Qji for j 1,

u.(aA) W j,n-I(a*) _A_.i±!n forn 1,jk2; (C-3)

Vj0laF) - (-A-) for j k 1 ,

Vjn(a,A) W Vj'n_l(a,A) -f j-lnn for n k 1 , j Z . (C-4)

Now, consider the partial fraction expansion of the product

of the following two functions, where complex constants a # 0;

for integers m Z 1, k Z 1, define the function of complex

variable z,

f(z) - (+za) (+z)k (C-5)(l(1zzpm

Develop f(z) according to partial fraction expansion
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M-1 un m_ k-I v n _C
f(z) Zn- (l + k- i lk (C-6)

Multiply both sides of (C-6) by (i+za) to obtain

1- fl Is k-l
k ft. = Un (1+za) + (l+Za)m 'E.- (C-7)(i+zA) n-O (c-0)

Take the p-th derivative of (C-7) with respect to z, and then let

z - -1/a; the right-hand side becomes simply uP p! aPc, while the

left-hand side is

a k+P (-B)P (k)p (C-8)k+p p

Equating the two sides, we recognize that coefficient up in (C-6)

is equal to Pkp (a,p) defined in (C-1). A similar treatment for

coefficients (VnJ in (C-6) yields the following expansion: for

m k 1, k 1 1, a ••

1 r Pkn(a,p) k-i vmn(aLp)
(l+za)m k / l m-n + . (C-9)
(I~a~m(i+zp) n-0 (i+zcx).;-Gz kF

Observe that expansion coefficients (pkn(ap)) do not depend

on mr, and that expansion coefficients {vmn(ap)) do not depend on

k. It should also be noted that numerical difficulties can be

expected with series expansion (C-9) when m and k are large, and

a is close to P, due to the alternating character of the terms.

Although the terms themselves can be calculated very accurately

by means of (C-1) and (C-2), the sums in (C-9) will lose

significance due to cancellation effects.
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APPENDIX D. TWO ALTERNATIVE EXACT ANALYSIS METHODS

HIGH-ORDER MOMENT APPROACH

We can use the methods of (4; page 881 to determine the exact

exceedance distribution function of sum=er output z in (4),

provided that we can accurately evaluate the higher-order moments

of the summer inputs (yn|. These moments can be obtained as

follows; for xo 0 1, and g(x) a x - 1 - ln(z) for x > xo, zero

otherwise, the k-th moment of yn is given exactly by

y~kn- g(x) u)k du p(u)(u- I- ln(u))k (D-i)

z 0

for k 1 1. For the exponential density (2) of input random

variables xnx) this k-th moment becomes

k Jdu a exp(-Iu) (u - I - ln(u))k for k I , (D-2)Yn

x0

which depends on k, xo, and a. Since the integrand is positive

for all u, regardless of k and a, these integrals can be

conducted very accurately to high order k, and used in the

recursive procedures of [4] to get the cumulants of JynJ and x.

The major stumbling block to this approach is the round-off

error encountered in transforming moments to cumulants. Double

precision arithmetic is a necessity for useful numerical results.

For k - 1, a closed form result is available; see (63). For

k - 2, (D-2) could be evaluated from the results in appendix F.
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CHARACTERISTIC FUNCTION APPROACH

An alternative approach is to directly numerically evaluate

the characteristic function of (yn|, which is given exactly by

f y) w exp(i•yn)= exp(i~g(Xn)) = du px(u) exp(iEg(u)) -

xO a

- J du px(u) + J du px(u) exp(iE[u - 1 - ln(u)]) . (D-3)
--a xo0

When probability density function p,(u) is exponential, this

reduces, for xo 0 0, to

f y(E) - 1 - exp(-axo) + a J du exp(-lu + iE[u - I - ln(u)]).(D-4)
xo0

The integral depends on E,, a, and xo0 It must be numerically

evaluated very accurately for numerous values of E.

The major drawback with this approach is the lack of decay of

characteristic function fy(E) with E. Namely, fy(E) behaves as

the constant, 1 - exp(-axo), as E 4 _w. In order to numerically

Fourier transform fz(&), which is given in terms of powers of

fy(E), we must determine the dominant asymptotic behaviors of

fy E) and fz(E). In fact, it will be necessary to determine

several of the leading terms in the asymptotic expansion of

f y(), at least to the point where the remainder decays fast

enough to ensure that the termination of the Fourier integral, on

the remainder of fz (t), contributes insignificantly to the trun-

cation error. The asymptotic behavior of fy(t) is now considered.
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ASYMPTOTIC BEHAVIOR OF CHARACTERISTIC FUNCTION

FOR IMPULSIVE PROBABILITY DENSITY FUNCTION

The generic problem is as follows: a given probability

density function py(u) has an impulse of area A, at the origin,

and a distributed component which is nonzero only for u 2 yo'

where yo = g(xo). Furthermore, py(u) is smooth for u > y0 and

decays to zero for large u. The corresponding characteristic

function is

f " M + 1 du exp(itu) PyiU) (D-5)
Yo

We integrate by parts, letting (for u ) yo)

U - exp(au) py(u) a h(u) , dV - du exp(-(a-it)u) , (D-6)

where positive real constant a is yet to be chosen. Then,

dU - du h'(u) , V , - (D-7)

leading to

f() A1 + exp(-(a-ih)yo) +du exp(-(a-it)u) h'(u).
y a-it h~ 0) + -jjd DB

Yo (D-8)

Repeated integrations by parts yields the asymptotic expansion of

characteristic function fy () as

f A(+ - 7AI + e2 (-i)n exp(-ayo) h (y) as t * ±w
1 n-1 (ai)n (y(D-9)

Strictly, the functions and derivatives are evaluated at u W yo+.
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Because h(u) - exp(au) py(u), the derivatives required above

can be evaluated as follows; for u > yo'

h'(u) = exp(au) [a Py(U) + pM(u)J , (D-10)

hw(u) W exp(MU) [a2 p (u) + 2a pl(u) + p;(u)] . (D-11)

Then, the asymptotic expansion for characteristic function fy(I)

becomes explicitly, to third order, f(E) - f 3 (E) as E ton, where

f 3 (•) P I + Pexp L2 • J (D-12)3")•a~ + Al + (n-Xy) --r

and

P P- (ao +y (yo + po (y.)-O 2 w - ( p )J, (D-13)

P am-4 I(a 2 pyyo + 2a pj(y0 ) + p;(yo))*(1)
a'

One possible choice for a is to make the coefficient,, P2 0' of

(1-iE/a)-2 equal to zero; that is, take a - -pi(yo)/py(YO), or

approximately so. Another is to let exp(-uu) duplicate the

asymptotic behavior of py(U); that is, have h(u) approach a

constant as u 4 +-. The choice of a does not seem critical.

The individual terms in f 3 (t) can be easily Fourier

transformed analytically. The leading term is an impulse at

u - 0, as before. The next term is a decaying exponential

starting at u - yo. The (1-i&/a)- 2 term leads to a u exp(-u}

type term, also delayed to u - Yo. The last term behaves as

u2 exp(-u), but starting at u - yo.
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We are also interested in the asymptotic decay of a power of

fy(C). Letting z - (1-it/a)" , we have the k-th power

f k()-_ fk(). fA1 + exp(ityo)tPI z + P2  2 + P 1 3))k

"A k + k Ak-1 exp(yo + z2+ 3 + k) A k- 2 x
AI A1  0+p1yz)+1  2 +3 2, 1

X exp(it2ya)(P2 I2 + 2 P 1 P2 z3J + gjA,3 exp(it3y 0 )P3 z

(D-iS)

as z 0 0, to third order. Substituting for za,

r )k - f3k(;) a A1k + k A-k exp(ixyo ) + 1-/t +

+3 + (k) 4k2 2y 1 1 2 i j+
(1U/)2 1 ezp(it 0  )(

+ (kAk3J 1 x'~O' - I as E ±. (D-16)
310(1-U/a)

This is the desired result for the asymptotic behavior of the

k-th power of characteristic function fy( ).

The corresponding cumulative distribution function is

Ak Cv)+ k Ak-if P CC, +
SC 0 (v) 1 A 1 C1 (v 1 ) + P2 C2(V) P3 3(vl))

+ (k),A k-2 (p2, +.v. 2, P,, ,,, (k) A"k-3 P• 3,, ,
+ 1~ 12 ( C2(v2)+2 P1  2 C3(v2)j + g 3 1~ 1 3(v3)

(D-17)

where

vn a a(v - ny0 ) • (D-18)
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EVALUATION OF DERIVATIVES OF py(U)

In order to use the results in (D-12) and (D-14), we need to

know the derivatives of probability density function py(u) at

u - ye+ where yo - g(xo). Random variable yn is obtained by

nonlinear transformation g(zn), where nonlinearity g(z) is

presumed to be strictly monotonically increasing for x > zo, and

to be zero for x < x0 . We now relate the desired derivatives of

py(u) to those of p,(u) and the nonlinear transformation g(z).

This will enable us to determine the constants P1 1 P2 f P 3

required in (D-14).

For v > yo, the exceedance distribution function of random

variable yn is given by

E y(v) - Pr(yn > v) - Pr(g(xn) > v) - Pr(xn > §(v)) - E3(§(v))
(D-19)

Here, §(y) is the inverse function to g(x), at least for y > yo;

that is,

if y - g(x) for x > xo , then x - §(y)' for y > y 0  g(xo) -
(D-20)

A useful relation follows from the fact that g(§(y)) - y. Taking

a derivative with respect to y, we have g'(§(y)) §'(y) - 1 , or

1(D-21)
' g,(§(y)) •

The probability density function of random variable yn is

given by
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-d - d
py~u a= - (u) = () -E 1x(§(u)) = p x (§(u)) §'(U) -

M g'(•(u)) for u > y (D-22)

where we used (D-21). If we now let u - g(t), this latter

relation takes on the desired very useful forms

Px(t)
py(g(t)) =g'(t) " (D-23)

Substitution of t - xo yields py(Yo) - px(xo)/g'(xo), which is

one of the results required for (D-14). Notice that inverse

function §(y) is not required or used in (D-23) or the sequel.

We now take two successive derivatives of (D-23) with respect

to t, to get

g (t) p(t) - Px(t) g"(t)
p•(g(t)) = g'(t)3 (D24)

9&2,P 3 gal g* PSI + (3g2- gig"') p1p(g(t)) - g 5  (D-25)

where all the quantities in the last equation are to be evaluated

at argument t. When we substitute t - xo, we obtain expressions

for p(yo) and p"(yo) in terms of quantities easily available

from the given functions px(u) and g(x). There is no need to

evaluate inverse function §(y) or its derivatives at all.

For example, we have, for x > xo and for u > 0,
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g(z) -x - 1 - lm~i), gt(x) . 1 - 1 0 g"Mx f ~ (D-26)
z x

P1 (u) a ~ exp(-Iu) ,pj(u) = -a2 exp(-!u3 f p;(u) a 3 ezp(-Au)
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APPENDIX E. TABLES OF FIRST FOUR CUMULANTS OF Yn

FIRST FOUR CUMULANTS OF yn FOR Io - 1

S(dB) x y (,,xoSl Xy(2fxoS) Xy(30zoSll Xy(4,,zofi)

-- .14849 55068 .17363 54789 .36390 41244 1.1105 77108
-3 .37232 63923 .67739 77766 2.1866 94609 10.222 37915
-2 .44083 61060 .87450 33444 3.0742 91858 15.641 93753
-1 .53192 32228 1.1641 73519 4.5105 69661 25.281 35153
0 .65328 77247 1.5963 40984 6.9002 68199 43.135 87531
1 .81510 93535 2.2499 35901 10.982 78191 77.532 33382
2 1.0307 05214 3.2500 85125 18.129 05704 146.29 59138
3 1.3173 12381 4.7954 26841 30.913 39282 288.51 60247
4 1.6970 24416 7.2014 17458 54.221 46053 591.76 61973
5 2.1979 28595 10.968 93324 97.408 56056 1255.9 48815
6 2.8555 11925 16.892 91290 178.52 20929 2744.8 30537
7 3.7144 26320 26.234 42995 332.59 30788 6149.3 66839
8 4.8307 25577 40.993 28950 627.96 80417 14066. 27845
9 6.2747 10254 64.339 96462 1198.5 59409 32737. 77500

10 8.1345 44258 101.30 01036 2307.6 61144 77293. 54256
11 10.520 84245 159.83 93733 4474.4 34247 18465 5.1198
12 13.572 47552 252.58 28253 8724.9 42288 44542 8.8106
13 17.463 89993 399.53 99358 17090. 91588 10829 81.677

FIRST FOUR CUMULANTS OF Yn FOR zo - 2

S(dB) Xy (l,XoS) X yl2,xoS) Xyl(3,XoS) X yl4,Xoi1

-w .12796 27858 .17574 47137 .37421 11513 1.1387 25648
-3 .34822 40437 .69043 82072 2.2305 06064 10.384 05135
-2 .41655 24216 .89094 29992 3.1298 99242 15.860 39913
-1 .50764 21649 1.1850 11999 4.5823 63547 25.584 30823

0 .62925 97917 1.6227 77524 6.9941 24512 43.565 01106
1 .79164 09435 2.2833 42973 11.106 35405 78.149 58412
2 1.0081 35006 3.2919 45145 18.291 97917 147.19 16125
3 1.2959 77672 4.8472 32578 31.127 31394 289.81 88541
4 1.6772 24228 7.2645 48258 54.499 84453 593.65 45829
5 2.1798 91997 11.044 52901 97.766 23265 1258.6 63214
6 2.8393 78415 16.981 77103 178.97 45759 2748.6 86124
7 3.7002 41138 26.336 94483 333.15 58187 6154.7 66460
8 4.8184 48437 41.109 44269 628.65 56484 14073. 72632
9 6.2642 33059 64.469 36116 1199.3 85027 32747. 89234

10 8.1257 12529 101.44 20408 2308.6 36021 77307. 08684
11 10.513 47608 159.99 29258 4475.5 67530 18467 3.0099
12 13.566 38612 252.74 69308 8726.2 41019 44545 2.1601
13 17.458 90366 399.71 34719 17092. 38514 10830 11.838
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FIRST FOUR CUMULANTS OF Yn FOR zO a 3

S(dB) X¥(1,Xoi} &y(2,Xo,) Xy(3,xo,) x y(4,Xoi)

-- .08161 61389 .15797 37056 .38690 96395 1.2208 51895
-3 .27666 02014 .69156 35364 2.3702 27986 11.036 89414
-2 .34121 53043 .90194 63156 3.3221 83512 16.774 78383

-1 .42874 07666 1.2104 17015 4.8501 33315 26.896 18335

0 .54736 75223 1.6685 94431 7.3691 87760 45.481 75146

1 .70773 91341 2.3571 33468 11.631 37379 80.982 51465

2 .92358 84667 3.4026 30423 19.021 84015 151.39 81523
3 1.2124 28857 5.0045 81998 32.129 31540 296.05 40638
4 1.5964 18859 7.4783 77694 55.852 29933 602.83 07406
5 2.1034 74853 11.323 74546 99.555 41783 1272.0 15276
6 2.7687 09493 17.333 46922 181.29 04235 2767.8 40967
7 3.6362 73368 26.765 75330 336.08 70650 6181.8 14926
8 4.7616 84723 41.617 23609 632.28 52476 14111. 29939
9 6.2147 55389 65.055 34614 1203.7 86484 32799. 24592

10 8.0832 59751 102.10 31337 2313.8 71014 77376. 20297
11 10.477 54291 160.72 42975 4481.6 84888 18476 4.7253
12 13.536 32086 253.54 25985 8733.2 76884 44557 2.3351
13 17.433 99077 400.56 68463 17100. 36401 10831 67.581

FIRST FOUR CUMULANTS OF Yn FOR zo - 4

S(dB) xy(1,Xoi) XY (2,xg) XY(3,zo,I) Xy(4,zol)

-W .04409 23362 .11669 06448 .35266 30056 1.2490 58964
-3 .19680 45752 .62991 50503 2.4586 33259 11.977 52732
-2 .25275 52920 .84403 91675 3.4874 09776 18.216 44483
-1 .33098 77685 1.1623 08487 5.1381 14630 29.139 34394

0 .44016 13655 1.6398 93287 7.8490 33261 48.998 37207

1 .59167 89225 2.3618 68137 12.402 31198 86.492 11951

2 .80018 53326 3.4596 25997 20.218 49273 159.95 79889

3 1.0841 03120 5.1369 50753 33.922 84360 309.15 65917

4 1.4663 01430 7.7119 13587 58.445 51834 622.50 32500

5 1.9750 40621 11.684 38786 103.17 17742 1300.9 23790

6 2.6453 34913 17.844 38888 186.15 89727 2809.4 09138

7 3.5208 35504 27.444 78839 342.42 69507 6240.3 71327

8 4.6562 93538 42.475 26777 640.29 29312 14192. 26152

9 6.1206 54795 66.095 85133 1213.6 27511 32909. 34237

10 8.0008 77841 103.32 27879 2325.6 76461 77523. 73434

11 10.406 63981 162.11 42758 4495.5 51594 18495 9.8717

12 13.476 17733 255.09 01757 8749.2 70217 44582 7.5304

13 17.383 59317 402.25 69708 17118. 52208 10834 97.984
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FIRST FOUR CUMULANTS OF yn FOR zo - 5

S(dS) XY (1,xoi) X y(2,,xoi) x y(3'xo'i) XY (4,,xo'i)

-. .02169 71321 .07429 15920 .27629 23357 1.1378 38302

-6 .06315 81464 .23428 94293 .96935 98872 4.5748 10040

-5 .07820 10435 .29577 38500 1.2557 42634 6.1234 69370

-4 .09966 37988 .38597 79652 1.6911 30853 8.5814 32049

-3 .13059 80027 .52048 20797 2.3690 78533 12.613 56291

-2 .17548 64274 .72384 98638 3.4491 59992 19.453 18457

-1 .24077 73591 1.0346 12281 5.2064 25434 31.446 96885

0 .33548 43650 1.5126 74268 8.1193 82192 53.177 35907

1 .47177 85899 2.2502 13248 13.028 97303 93.844 08351

2 .66549 58331 3.3878 89404 21.432 66966 172.47 94233

3 .93653 73661 5.1397 44742 36.043 12414 329.71 05887

4 1.3092 61848 7.8329 42384 61.872 58912 654.91 96171

5 1.8130 90353 11.972 72241 108.36 34174 1350.0 16099

6 2.4835 95568 18.348 79645 193.58 95155 2880.9 67995

7 3.3642 83219 28.207 60768 352.54 26287 6341.2 44308

8 4.5091 48759 43.527 50601 653.47 59357 14330. 61359

9 5.9860 00189 67.454 60329 1230.1 76332 33095. 11689

10 7.8805 39970 104.99 11600 2345.8 02719 77769. 26471
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APPENDIX F. INDEFINITE INTEGRAL OF EXPONENTIAL INTEGRAL

The integral of interest here is, for x > 0,

W M

E12(x) uf !& EI(t) - f !L ln(t) exp(-xt). F)

x 1

A series expansion for Ell(x), which is good for small x, is

given by [9; pages 258 - 259]:

E 11(x) - f[ln(x)+yJ2 + + 2 for x > 0 . (F-2)
+n-i n nt

However, for large x, this series loses significance, and an

asymptotic expansion is required.

we begin with the second form in (F-i) and express

In(t) ln(l + t-1 - 2 (_1 )n-1 Yn (t-1)n for It-il < 1 (F-3)
t 1 + t-1 - nn-l

where

+ .1 + + +*-.+ 1 for n 1. (F-4)
Yn2 3 n

Then, as x 4 +,

E1 1 (x) j J dt exp(-xt) _- ) n-1 Yn (t-1)n -

1n-i

exp(-x) = n (yn

x2 n-l (-x) n--I* (F-5)
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The leading terms of (F-5) are given by

exp(-x) I1_ 31 11 50 +274
E 11 (x) - !E.Z.i j 3 21 50 274T_-- as z 4 4a. (F-6)

+2 1 ~ ~ - '
A program for Ell(x) for x > 0, incorporating series

expansion (F-2) and asymptotic expansion (F-5), is given below in

BASIC. The switch between the two expansions is done at x - 13,

which res-its in 6 significant digits in result Ell(X). A

recursion for n! yn is built into the program in lines 190 - 200.

10 DEF FNE11(X)
20 IF X>13. THEN 150
30 Tol-1.E-14
40 T-LOG(X)+.57721566490153286
50 S-.5*T*T+PI*PI/12.
60 T-I.
70 Sn-0.
80 FOR N-i TO 100
90 T--T*X/N
100 R-T/(N*N)
110 Sn-Sn+R
120 IF ABS(R)<Tol*ABS(Sn) THEN 140
130 NEXT N
140 RETURN S+Sn
150 T=-1./X
160 A-1.E10
170 H-G-P-S-1.
180 FOR N-2 TO 100
190 H-H*(N-1)
200 G-G*N+H
210 P=P*T
220 Ao-A
230 A-G*P
240 IF ABS(A)>ABS(Ao) THEN 270
250 S-S+A
260 NEXT N
270 S-S-.5*Ao
280 RETURN S*EXP(-X)*T*T
290 FNEND

132



TR 10539

APPENDIX G. DIRECT EVALUATION OF EXACT EXCEEDANCE DISTRIBUTION

The exact characteristic function of output yn - g(Xn) in

(4), of the nonlinear device in (3), can be found with the aid of

(2). For the case, HI, of the signal-present bins with equal

signal powers Sn - S, it is given by the integral expression

f~l)(•) . eXp(±•Yn) - exp(ilg(zn)) . J du ql(u) exp(itg(u)) -

- 1 - exp(-Ixo) + f du a exp(-Iu) exp(it[u - 1 - ln(u)]) , (G-1)
xo0

where a - 1/(1 + S). For case go replace a by 1. The

characteristic function of decision variable x in (4), for signal

present in M bins, is then given by

(f(l)()M Nf()N-MfM - .u (G-2)

This result can be evaluated numerically by brute force from

(G-1) for numerous values of E, and used in the fast accurate

procedure of [7] to directly obtain the exceedance distribution

function of decision variable z, at least for some cases of

breakpoint x0 and large N. An example for S - 0, x0 - 1, and

N - 1024 is given in figure G-1, where we evaluated integral

(G-1) at increment At - x/120, up to E - 1. This plot is the

false alarm probability and should be compared with the corres-

ponding simulation curve in figure 3. Agreement is excellent,

but we are now able to investigate down to the 10-6 level.
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E-I

E'6

0 40 s0 170 10 200 240

V

Figure G-1. False Alarm Probability for N - 1024, xo - 1
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